AD=AD69 867 TEXAS INST FOR COMPUTATIONAL MECHANICS AUSTIN F/6 12/1
_ GALERKIN AND COLLOCATION=GALERKIN METHODS WITH SUPERCONVERGENCE==ETC(U)
f JUN 79 6 F CAREY» D HUMPHREY» M F WHEELER NO0014=T78=C=0850
! UNCLASSIFIED
| oF |

I
J



4—
S

iz 22

o

o
= & 12 2
=:tok |

| 59 7 E

||||| T
= |

NL2s flis mee

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A




LEVEL =

GALERKIN AND COLLOCATION-CALERKIN METHODS

WITH SUPERCONVERGENCE AND OPTIMAL FLUXES

G. F. Careyl, D. Humphreyz, M. F. W‘neeler3

\

MA069867

© eV
P e TUTS
oo 151
ﬂ?ﬁf«%‘}b,ﬁ“‘g %*f C
yi

This doaunenthullxnn(qqnovgd
for public release and sale; its

. distribution is unlimited.

(Submitted to International Journal of
Numerical Methods in Engineering)

DDC Fice copy

P —

1 Texas Institute for Computational Mechanics, University of Texas, Austin,

Texas.
Lawrence Livermore Laboratories, Livermore, California.

3 Mathematical Sciences Dept., Rice University, IHouston,’ Texas.




|  DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



TABLE OF CONTENTS

Table of Contents
List of Figures
List of Tables
Abstract
Introduction

Part 1. Galerkin Method, Superconvergence and Flux
Calculations

Calerkin Finite Element Method
Nonlinear System Solution
Error Estimates
Superconvergence

Optimal Flux Computations
Computational Aspects

Part II. Collocation-Calerkin Method, Jacobi Points, and
Flux Calculation

P-Collocation-Cal: -kin Method

Flux Computation and Jacobi Points
Acknowledgement

References

(i) B

Page

(1)
(ii)

(i1)

13

17

18
18
21
22

23

———— - A A ——

ST

-




LIST OF FICURES

Figure 1. Error in derivative at the selected Gauss points 0.1,0.3,...,0.9.

Figure 2. Error in boundary flux for pellet problem showing rates (slopes)
for differentiation formula and new quadrature formula.

LIST OF TABLES

Table 1. Convergence and superconvergence at Gauss points.
Table 2. Error in computed boundary flux.
Table 3. Derivative accuracy using quadrature and Jacobi points.

Table 4. Boundary flux comparison for quadrature approach.

~ = 7
Acceusiom For
NI1S (Chndl
DCC TAB

\ Unoaifioanged i
sustificotion k.

SOL

PR
—Avrilek{iity Codes

£ J&i{.’.!‘t—l'l/or
Dist Special

(11)




GALERKIN AND COLLOCATION~-GALERKIN METHODS

WITH SUPERCONVERGENCE AND OPTIMAL FLUXES

5
G. F. Careyl, D. Humphrey~, M. F. theler3

ABSTRACT

Finite element methods are Formulated and investigated for Lhe effective-
ness factor problem for heat and mass transfer with chemical reactions in
catalyst pellet models. A Galerkin finite element method is compared with a
previous C1 collocation method ([7], 1975). A scheme that is conceptually
intermediate between these two methods and accordingly has been termed
collocation-Galerkin is formulated and numerical experiments considered,

O0f particular interest here are superconvergence results at the Gauss and
Jacobi points, respectively. Numerical studies of superconvergence in the
presence of a nonlinear reaction-rate term arc presented. An integral formula

is devised and used to compute the flux at the pellet surface to optimal ac-

curacy. Numerical experiments are conducted to demonstrate the improvement

in computed fluxes.

INTRODUCTION

The particular class of nonlinear two-point boundary problems considered
here arise in describing heat and mass transfer in a catalyst pellet with
accompanying chemical reaction. Such problems are of considerable importance

in the study of packed bed reactors in chemical engineering where the catalyst

Texas Institute for Computational Mechanies, University of Texas, Austin,
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pellets constitute the solid phase. The complexity of transport processes
for both fluid and solid phases in the reactor lead to "separation'" of the
problem to computations in the solid and fluid, respectively. Moreover,
since the characteristic‘local rates in the pellet are large relative to
those for the reactor, a stcady-state model for heat and mass transfer in the
pellet can be assumed [1,2,3].

In practical simulations of tramnsient models Tor chemical reaccors the
catalyst-pellet problem may require solution numerous times. Moreover, the
form of solution may be quite sensitive to the choice of reaction rate para-
meters such as Thiele modulus and there may be bifurcations with multiple
solutions. Consequently, numerical solution may be a formidable task for
certain parameter ranges. The model is capable of representing both relative-
ly quiescent solutions where the reaction rate is small, and also "ignited"
states where the reaction rate is high in the vicinity of the pellet surface
and a boundary-layer results.

For these reasons a variety of numerical mcethods have been developed
for solving the associa&cd nonlinear two-point problems. Global residual
methods, particularly collocation methods, have been devised and extensively
used. Of these methods global orthogonal collocation methods provide optimal
accuracy and efficient solution for effectiveness factor problems with low-
to-moderate and even quite large Thiele modulus. Excellent treatments of the
theory and techniques and numerous examples are described in the recent
literature [4,5].

If the Thiele modulus is large and the solution has a steep gradient near
the pellet surface the global orthogonal collocation method, and global ex-
pansion methods in general, arc wot appropriate. The polynomial degree must

be high to ensure that there are sufficient points in the’ boundary-layer

s L -




zone. This, in turn, leads to concommitant crrors due to ill-conditioning
of the nonlinear algebraic problem and also to convergence problems in itera-
tive solution algorithms. Essentially, these global methods attempt to de-
termine a very smooth solution to problems where the exact solution may have
discontinuous or large derivatives. One approach to the problem with large
Thiele modulus introduces a "burnt out" region which the solution is zero

and a '"reaction layer" and the problem is solved in the reaction layer by
orthogonal collocation [6].

In a previous paper (7] the method of orthogonal collocation on finite
elements is developed to combine the accuracy of orthogonal collocation with-
in a finite element framework. This naturally allows graded nonuniform meshes
which are coarse in the pellet interior and fine in the boundary layer. The
particular scheme applied is a C1 collocation method with polynomial approxi-
mation on each element and, naturally, continuity of function and derivative

only at the element interfaces.

Co-Galerkin techniques presently constitute the most widely analysed and
applied class of finite\element methods for two-point problems and elliptic
boundary-value problems (for example, see {8]-[11]}). Superconvergence es-
timates of the Galerkin and collocation methods have been proven for linear
two-point problems with smooth coefficients [12,14,22]. In the early sections
of this paper we formulate and apply the CO-Galerkin finite element method
for the nonlinear pellet problem, addressing in particular the superconver-
gence properties in the presence of the nonlinearity.

The C1 collocation formulation requires no quadratures and this may
lead to more efficient computations than Galerkin methods, especially when

iterative solution is required and the computation in the pellet is coupled

with a transient time-stepping solution in the fluid phasé. On the other
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hand, the CO-Galerkin method while nccessitating element quadrature computa-~
tions, requires only continuity of the approximant. Thus, the Galerkin
methods are better able to treat discontinuities, layers and other irregular
solution behavior. We combine some of the cfficiency and simplicity of Cl
collocation with the lower continuity of CO—Gulcrkin in an intermediate
method, here termed CO—Collocation—Galerkin. Error estimates for such "weak"
methods and linear problems are presented in [15]. The CO—Galerkin method
is superconvergent at the nodes (knows). For linear problems the CO—Colloca-
tion-Galerkin method is superconvergent at the nodes (knots) if the Jacobi
points are collocation points and we give here the theoretical superconver-
gence estimates for linear and nonlinear reaction rate terms with accompany-
ing numerical studies of convergence and accuracy (16].

The flux at the catalyst boundary is of practical importance and a
special quadrature technique is applied on the extreme clement at the boundary
to compute the flux to optimal accuracy. Numerical results for the boundary

flux are compared with ghose obtained by more staudard approaches.
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PART I. GALERKIN METHOD,SUPERCONVERGENCE AND FLUX CAILCULATIONS

Galerkin Finite Element Method

We describe briefly the standard Galerkin finite element method prior
to considering details concerning superconvergence. This also facilitates
subsequent description of the CO—Collocation—Galerkin method.

Consider the diffusion and rcaction of a species in an isothermal cata-

lyst pellet as described by the equation

(xa—l dc.

= <= = $0el . Doxrz) (1)
with

dc i . dc . :

o L B R Bi (c(1) - 1) (2)

where a = 1,2 or 3 for planar, cylindrical and spherical geometry, Bim is
the Biot number for mass transfer [1], and f(c) is the reaction rate expression
for the problem in consideration.

Introduce an approximation c(x) into the differential equation to deter-
mine the residual. On applying the weighted residual condition, the usual
integration by parts yields the (weak) variational statement of the problem,

1
a-1 a-1 ¥
- x f{c'{x)v'(x) + £(c)v)dx + x- “c'{x)vix) = 0 (3)
0 0
for admissible test functions v(x) and where the "prime'" denotes differentiation.

In a CO-Lagrange finite element method the approximation on a partition

of m elements and having n nodes X, = 0 < Xy € aan < =" 1, has the form
n L
c(x) = ] c.¢,(x) (4)
jap 33
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where {¢J(x)} are piecewise-polynomial patch functions associated with the
nodes'{j} of the mesh. In the simplest instance, ¢i(x) is linear on each
element and satisfies ¢j(xi) = dij’ Kronecker delta.

The Galerkin method utilizes the same test space as trial space so

that v(x) = {¢i(x)}, i=1,...,n and from equation (3),

1 1

n
N R U R B NI T e

0 0
ded = 152, 0,0 (5)

whence from (2),

n
a=l- . & ; a-1 o e
jzl j x ¢i¢jdx cj + Blmcndin + [ X ¢if(c)dx Blmdin
0

AR A2 T (6)

For convenience, we write this in matrix form as

At € Fle) = b or gle) = 0 (7)

where the vector F(c) represents the contribution of the nonlinear reaction
rate term to the finite element system and, clearly, g(c) = Ac + F(c) = b.
Considering a general element e of degree k with end nodes X and

X s (s = r + k), the element contributions to the nonlinear system (7) are

X
S

(a9, = f xa—lli(x)li(x)dx
X
T
and i,]

b 4
s

1585w vl (8)

(fi)e = J xa—lli(x)f(c)dx

X
r

where {Ri(x)} are the local Lagrange polynomials of degrec k on elcment e,




li(xj) = aij on QQ = [xr,xS].

Remark: The above formulation is quite standard and can be readily general-
ized to finite element bases other than those of Lagrange type [10,11]. We
shall utilize these and similar relations for subsequent superconvergence,
flux and Collocation-Galerkin derivations.

Nonlinear System Solution

Depending on the strength of the nonlincar reaction rate term, either
of two iterative techniques arc applied. For mildly nonlinear problems a

Picard (successive approximation) iteration is suitable. For iterate k+1,

P

P & e, o 9)

~

This iteration fails at large Thiele modulus and a Newton iteration is used,
J(c =e ) = ~g(c) ; s OB DL (10)

Details concerning the structure of the Jacobian J and system matrix A ,

~

efficient direct solution by blocks and element block storage are similar to
those described in the grevious study of orthogonal collocation on finite
elements [7] and will not be elaborated upon here. One important distinction
is that f and é are now symmetric, a feature that is exploited in the

solution algorithms.

Error Estimates

Let ¢(x) denote the exact solution and ¢(x) = ¢(x) - c¢(x) the error.

” N A ; a-1 8
We introduce an inner product with weight factor x and the associated

[33)

m 4 2 i
normed spaces J  which are the closure of €  functions with respect to

the weighted m-norm,

ulfy < 4 3 B )t} : an
!

} 2
whére (| fl‘Q » I g dx defines the weighted norm.

.
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For a linear reaction term he standard cerror cstimates follow even {or the
singular differential equation [17],

hell, < cu™fla™), (12)

where B 1is the unit "ball" in the domain, and h is the element length.
The global weighted norm of the error in the derivative is O(hm—l) as
expected [10,17].

Remark: For a spherical pellet (a = 3) the transformation u = xc yields a

nonsingular equation and the standard L2 norms can be used to obtain
I e(j)” = Chm-j il ull i e 0 B G (13)
= m,0 = 5

where Q = [0,1].
Let the reaction rate expression be nonlincar with £ and 9f/%u con-

tinuous on x € [0,1], ¢ € [-®,® ], Furthermore, let ’ .3 (x,u)| <M for all

Ju

x,u as above and
' g_fl xu) < A <N (14)

where A is the minimum eigenvalue of the gencralised eigenproblem for the
differential operator. Then [9] if u € ¢™ and the differential operator is
strongly coercive we again obtain the bounds of (13) for the nonlinear re-
action in a spherical catalyst pellet.

Thus, to obtain global error estimates for mass transfer with nonlinear
reaction in a spherical catalyst pellet we require bounds on the derivative
9f/9c of the nonlinear term. This implies that for mildly nonlinear problems
we sho 'd obtain the global rates indicated but that the rates have not been

established theoretically for problems with boundary-layers that are very

e s — - — —————————



pronounced.

Superconvergence

For linear problems there are special points within the elements at
which the approximation is much more accurate than the global rates suggest.
If p(x) = 1 and q(x) = 0 the approximate solution is exact at the nodes and
for more general linear differential equations one can prove that the solu-
tion or its derivatives are locally very accurate at special points such as

the Gauss or Jacobi points [12]. In the casc of the C0 Galerkin method the

solution is superconvergent at the nodes (knots) and the derivative is
superconvergent at the Gauss points, whereas in the previous Cl colloca-
tion investigations the solution is superconvergent at the Gauss points
[7]. The following numerical studies are designed to investigate super-
convergence for the class of practical catalyst models described carlier.
We first consider the problem of cquation (1)-(2) with Bim > ® g0

that the boundary condition becomes c¢(1) = 1. On a spherical domain and
with small Thiele modulps we obtain a smoothly varying, almost parabolic

solution. The nonlinear reaction rate toerm
2 .
f(c) = ¢"¢c exp[yY(1-1/T)] ¥ T = 1+8-RBc (15)

corresponds to an irreversible, first-order, nou-isothermal reaction and
parameters ¢ = 0.8, y = 18, 8 = 0.3 are chosen. The choice ¢ = 0.8 for the
Thiele modulus yields a concentration profile that varies from approximately
0.7 at x = 0 to 1.0 at x = 1. At smaller ¢ values the solution changes
very slowly and it is difficult to display the superconvergence results
effectively for finite precision computations.

From the linear theory we anticipate that, at least for moderate non-

linearities of the type indicated above, globally the finite element solution

+
on a uniform mesh should be O(hk 1) accurate and the derivative O(hk), where
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k 1is the degree of the element polynomial - with piecewise lincar these L2
error estimates are O(hz) and 0(h), respectively. Since the derivative ¢!
is superconvergent at the Gauss points in the linear problem, we now look
for 0(h2) at these points in the nonlincar catalyst model, As the Gauss
points are to be interrogated for superconvergent derivatives, a set of
nested mesh refinements is designed such that specific Gauss points are

common Gauss points to all the meshes. This implics thart the element basis

for these numerical experiments be of odd degree and that in successive

‘nested refinements each element be split to an odd number of elements. In

this way the central Gauss point of an element is preserved through success-
ive refinements.

Using an initial mesh of 5 elements and a piecewise linear basis, the
errors in solution and derivative at the Gauss points (0.1,0.3,...,0.9) are
computed and monitored in Table 1 for successive meshes of 25, 125 and 625
elements. The derivative values computed from a mesh of 1250 elements are
taken as exact to ten decimal places on the basis of these refinement studies

and global orthogonal collocation computations in double precision.

Given errors in the derivative of the form 0(hP) at the Gauss points
the power p is obtained as the shape of the log-log plot of the magnitude
of this error and mesh size h in Figure 1. The slopes for Gauss poiuts
0.1,0.3,...,0.9 are, respectively, 2.0,2.0,1.8,1.8, which confiims the 0(h2)
superconvergence properties. The error in the solution at these points yields

log-log curves with slopes 2.1,1.9,1.9,2.0,2.0 determined in like manner.

Similar results are obtained with higher-degree elements (quadratics, cu-

bics, vov)s
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LOG h

LOG le'l

-5

Figure 1, Error in derivative at the selected Gauss points 0.1,0.3,...,0.9.
Slopes give the superconvergence rates e' . 0(h?) for computations
with linear elements here and in general e' o p(hk+l) for elements
of degree k .
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Optimal Flux Computations

The boundary flux is of particular intcerest in practice as the poverning
equations in the pellet model are coupled to the mass and energy balances in
the fluid phase through the boundary conditions. For our purposes an essen-
tially exact flux dc/dx = 0.2834734796 accurate to all ten places is deter-
mined from a sequence of computations with uniform mesh refinements using
quartic elements. This is used for comparison of computed fluxes using the
standard approach and a new method recently proposed for which optimal es-
timates have been proven of linear problems [15].

The standard procedure for computing the boundary flux from the ap-

proximate solution is to differentiate the approximation polynomial on the

last element and evaluate the resulting polynomial at the boundary node
concerned. Since c(x) is O(hk) at x = 1 then ¢' is O(hk—l). The new method
is based on a quadrature algorithm on the last element.

The essential idea 1s to bugin with the weighted-residual condition and
integrate by parts as ip the usual variational formulation, but by choice
of a specific test (weight) function determine the flux from the elcment
quadratures involved. Let [xn_k,xn] denote the extreme element and apply
the weighted-residual condition in equation (1), followed by integration by
parts, to again obtain the variational statement in equation (3). The quan-
tity of interest, c'(l), appears in the integrated boundary terms.

In the present instance we have computed an approximate solution c(x)
and by simply setting v(0) = 0, v(1) = 1 in equation (3) we obtais an ex-
pression for c'(l),

1

c' (1) = J xn-l(c"(x)v'(x) + [(e)v(x))dx (16)
! .
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More particularly, if v(x) is chosen as the lincar test function on the last

element  ,
m

0 v x € 10,x ]
vix) = a7)

(x-xn-k)/hm e ik e'lxn-k’ll

Using the computed finite element solution for c(x) in the integrand of (15),
we need evaluate only simple quadratures on the last element to obtain the
computed derivative,

1 1

ra = hiJ et (ax + J e (Iv(x)ax as)
X

m o
n-k “n-k

In linear problems if c(x) has (t+l) square-integrable derivatives (to be
precise, ¢ € Ht+1(9)f\ Hé(ﬂ) with Ht+l, Hé representing standard Hilbert
spaces [18]) then the error in [ is 0(ht+k) where k 1is the degree of the
element polynomial. The formulation is casily modified to yield the flux

at an arbitrary node or any point X in [0,1].

The formula (18) is used in the pellet problem to compute the boundary
flux and is compared with results obtaincd by the standard approach. Uniform
mesh refinements from 2 to 32 elements arc employed for linear and quadratic
elements in the comparison. In Table 2 errors in the boundary flux (EF) for
each of these cases are examined. The new scheme for computing boundary
flux is evidently superior: for example, computing on a mesh of 16 quartic
elements, we obtain 4 place accuracy using the standard method and 8 places

with the quadrature calculations.




1mmes‘nuﬂwhn-

Table 2.

Linear 8
Elements
16

32

Quadratic 8
Elements
16

32

Error in Computed Boundary Flux

15

i s e SR REITY
-2.580325850E-2 -7.009257E~4
-1.20184279E-2 -2.604545E-4
-5.3766312E-3 -7.26186E-5
~-2.4967754E-3 -1.87041E-5
-1.1950125E-3 -4.713 E-6
6.9828196E-3 -5.0954E-5
1.9441702E-3 -3.4761E-6
4,938324E-4 -2.225 E~7
1.234531E-4 '-1.39 E-8
3.08068 E-5 8.6° E-9

The rates for this nonlinear singular problem are consistent with those

predicted for linear problems.

Again, a log-log plot of the magnitude of

the error in boundary flux against mesh size h determines the experimental

rate of convergence for I'(1).

linear regression curves

in Figure 2: 1linears, p = 1.97, (2); quadratics,

P = 3.9, (4). Corresponding computed rates for &he standard method are

1.11,(1), and 1.96,(2), respectively.

The rates (p) are the computed slopes of the

The conclusion concerning rates for

elements of degree k is that differentiation produces fluxes of accuracy

O(hk) while the qptimal result 0(h2k) is obtained using the new quadrature

scheme. The implications for nonlinear computations, especially if the pel-

let problem is to be solved numerous times for flux or effectiveness factor

s Ao
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_ Figure 2. Error in boundary flux for pellet problem showing rates
(slopes) for differentiation formula and new quadrature
. " formula, .
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calculations, are evident. Since the work estimates for nonlinear solution
are dramatically reduced if a coarser mesh can be used, fluxes of a desired
accuracy can be computed much more efficiently using the quadrature result.
For example, a flux computed by differentiation from an approximate solution
of 32 quadratic elements (65 nodes) is less accurate than the new flux com-
puted from a mesh of 2 quadratics (5 nodes). The respective computation
times (using an efficient block diagonal-solver at each iteration to solve
for c(x) differ by a factor of approximately 16.

Computational Aspects

A few brief remarks concerning computational details conclude this seg-
ment of the investigation. The design of the finite element program is
based largely on that in reference [7] for the C} orthogonal collocation
technique and is described there in some détail. Accordingly, only the
main distinctions will be noted here.

The collocation technique leads to non-symmetric coefficient matrices
for the Picard successive approximation systems and to a non-symmetric
Jacobian in the Newton ileraticn necessitating non-symmetric system solvers
for each linear iteration. In the Galerkin analysis for the stated class of
self-adjoint differential equations, the finite element systems are symmetric.
More efficient sparse elimination methods may be applied here and special
iterative methods are also applicable {20,21].

The sparse matrices again have a block-diagonal structure each block
being of size (k+1) x (k+1), where k+l denotes the number of nodes in element
e . This structure can be exploited to economize both storage and sclution
as described for the finite element collocation method. The special quadra-
tures for optimal flux computations can be carried out using the basic Gaussian
quadrature routines implemented for calculating the element matrix contribu-

tions to the (Galerkin) finite element system.

rme—— - T —
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Part II1. COLLOCATION-GALERKIN METHOD, JACOBI POINTS, AND FLUX CALCULATION

Co-Collocation-Gnlerkin Method

Finite element collocation methods remove the necessity for element
quadrature but require smoother bases. This smoothness condition becomes
more prohibitive in higher dimensions. Even for the one-dimensional pellet
models of interest here, there are situations such as those associated with
layers and discontinuities where the less smooth CO Galerkin methods are
more appropriate. As the terminology suggests, the Co—CollocatiOn-Galerkin
method combines features of both collocation and Galerkin finite element
methods. The main theoretical foundations and error estimates for linear
and nonlinear problems are described in references [15], [16], and [18].

Qualitatively, the method is more like the C1 collocation scheme. On
any element of degree k > 2 the residual is collocated at k-1 interior points.
Rather than enforce continuity of the derivative at interface nodes between
elements, we require that a Galerkin projection for the variational problem
hold there. Specifically, at the interface the nodal equation arises from a
Galerkin projection of the residual with a test function that is only piece-
wise linear on the patch associated with the interface node.

To formulate the method return to the variational statement presented
in equation (3),

1

1
. Ixa-l(c'(x)v'(x) + £()Wdx + Xl av| = 0 19)
0
0

Define a partition of m elements and a C0 Lagrange basis as in the Galerkin

methad of Part I so that

n
e(x) = |} °j4’-(x) ‘ (20)
j=1 3 J

SR — e A st i
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where the basis {¢j(x)}, j = 1,...,n are again picecewise-polynomial patch

functions identificed with the nodes j. As usual, on c¢lement e,

k+1 (e
ca(x) = jzlcjzj (x) (21)

(e)

where {lj (x)} are the Lagrange polynomials and here c; are local (element)
values of ce(x).

For test functions we sclect piecewise lincar "hat" functions {ﬁr(x)},
where {r} are the interface nodes. Settiny v(x) = ﬁr(x) and using the ap-
proximation (20) in the variational statement (19), we obtain a set of mtl
finite element equations associated with the interface nodes and boundary

nodes and of the form

1 1

n i 22 1
) J xa-1§;¢3dx o [ X of(eax + et Gov | = 0 (22)
=1\ 5 0 9

the boundary conditions being included as in the Galerkin formulation.

Qt(x) and is linecar, so that the element contribution

11

On element e , ﬁr(x)

to interface equation (22) is

k+1

gie)(s) - %l ) [ xa-lﬁg(x)dx ¢ + { xa-lzr(x)f(c)dx (23)
e j=1 Q
(54

The remaining interior collocation equations may be derived from

equation (19;. Since the element basis is ¢ in the open interior of each
element, we may reform the element residuals by integrating by parts in (19)

to obtain

f {xa-lc‘)' = Fleylv de = 0 . (24)
Q

©

¥ |
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for test functilons satisfying v = 0 at the end nodes of cach element.  In-
troduce delta function distributions for v(x) to collocate the differcntial
equation at k-1 points {xp} in the interior of each element,

k+1 e
] 6@, ~Ele) = 0 ,p=1,...,k1 (25)
N e

J

The appropriate collocation points for optimal accuracy are the Jacobi

points in the element. Let {aj}, j =1,...,k-1 be the set of Jacobi points

on interval I = [(0,1] and w the Jacobi weights defined by the quadrature

3
formula
k-1
fx(l-x)l)dx = X a, (1-a,)p(a.)w, (26)
je1 3 h ¥ 3
I
for p(x) € P2r—3(1)’ the set of polynomials of deuree 2r-3 on I. Then on
element r , the collocation points arc located at
= + = P - :
arj X, hruj 5 r 15 I S Ly ongk=l (27)

In [18] we demonstrate that for the linear problem the numerical solution
is essentially exact at the nodes. Very accurate flux computations can be
made using the quadrature procedure of equation (18). For the linear prob-

lem optimal estimates
lex))]| = Oy mmd le' x| = 0(h%) (28)

are obtained when the flux is computed in this manner. The theoretical

estimates for the nonlinear problem are developed in [16].

i
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Flux Computation and .Jacobi Points

We return to the catalyst pellet problem and examine the alternative
flux techniques, again comparing computed values of the boundary flux. The
numerical studies are designed to demonstrate the theoretical results stated
above concerning use of the Jacobi points as collocation points and also the
quadrature rule for flux computation. Again, ((c¢) = ¢2c exp[y(1-1/T)],
T=1+B ~-B8c and ¢c*'(0) =0, c¢(1l) = 1 are prescribed. The reaction para-
meters for this comparison study are ¢ = .5, vy = 18 and B = .3,

In Table 3 the error in the boundary flux is given for solutions com-
puted on meshes of 2, 4 and 8 quartic elements. The derivative I'(1) is com-
puted by the quadrature formula using a finite element solution obtained by
collocation at the Jacobi points. The derivative ¢'(1) is computed directly
and in the table we demonstrate the relative accuracy here for solutions ob-
tained by collocating at the Jacobi and Gauss points, respectively. There
is a modest improvement (about one decimal place) if we compute the deviva-
tive directly from a collocation solution at the Jacobi rather than Gauss
points. If in addition the quadrature technique is utilized, two or three

further decimal places arc obtained.

Table 3. Derivative accuracy using quadrature and Jacobi poiats.

Mesh Jacobi Points Gauss Points
) IT - c' ()] |8 (1) - ¢'(1)] [&'(1) - ¢'(1)]
B e e 3.7 x 107° 1.0 x 107
4 2.0 x 1077 2.2 x 1070 3.0 x 1078
8 3.0 x 1077 1.6 x 1078 8.0 x 107/
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These results are also borne out in Table 4 where errors in the flux are de-
termined from solutions on meshes of 2, 4, 8 and 16 cubic elements. The
solutions are obtained by collocation at the Jacobi points. From a log-log
plot of error and mesh size h we obtain |[¢'(1) - e* (D ~ O(h3'4) £ o(ha),

k+l = 4 and [T(1) - c'(1)] ~ O(hs).

Table 4. Boundary flux comparison for quadrature approach.

Mesh (b~ 1) I = e* (1) [e' (1) - ' )]
2 5.9 x 10°° 4.3 x 107
4 2.7 % 1077 3.7 x 1079
8 1.8 x 10710 3.8 x 107/
16 1.2 x 10”11 1,9 % 10”8

Remark
B P ;

The smoother C approximations used in finite element collocation
impose a quasi~-uniformity requirement on nonuniform meshes encountered in

. . S 0 :
practice. This restriction on the mesh does not apply to the C -Collocation-

; 0 .

Galerkin procedure. The C  methods are, conscquently, better suited to
implementation in programs that incorporate automated mesh-refinement strate-
gies. This latter consideration is particularly important in nonlinear

boundary-layer problems corresponding to pellet models with large Thiele

modulus [22].
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